If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-10t-10=0
a = 4.9; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·4.9·(-10)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{74}}{2*4.9}=\frac{10-2\sqrt{74}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{74}}{2*4.9}=\frac{10+2\sqrt{74}}{9.8} $
| (p+7)-(6p^2+13p)=0 | | -5x=-725 | | -13q-8+18q=5q+12 | | 9(m-2)=+40 | | (8y+30)+(-2y-16)=-22 | | (x^2+3x-1)-(4x^2+7)=0 | | 63÷n=9 | | -5n+-22=-9n+14 | | 5(x-3)=9(x-2)-5 | | 5x-93+13x=213 | | 46=-2(n-1)+4(8n-4) | | 7x-(x+6)+2x=22 | | 26+2x+9x-16=15x+15-4x-5 | | -5x-23=12 | | 8p-2=4p+6 | | -5+2x-4=1-3x | | 4.9t^2+10t+10=0 | | 2/3t=9/1 | | 2x+9+3x-1=x+12+96+180 | | 7-3x+5=5x+4 | | 5(9-2x)=-35 | | N-9=-4n+36 | | -7w+17+15w=9+8w | | -5+2×-4=1-3x | | 3v-7=-2 | | 5-3x=-6x+23 | | 2.5x-8=5x+20 | | 13x+(1/12x)=0 | | 7x-9=-4x+90= | | 3(x+3(x–4))=6(x+1)–6(7–x) | | -4b-5+2b=-10 | | 5(8b+6)-7(2b+7)=-19 |